• Épreuve de mathématiques

    السؤال : 1

    Le domaine de définition de le fonction f(x)= ln( x 2 +3x4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9maakaaabaGaciiBaiaac6gacaGGOaGa amiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaWG4bGaey OeI0IaaGinaiaacMcaaSqabaaaaa@43CD@ est :

    Texte de la question

    Le domaine de définition de le fonction f(x)= ln( x 2 +3x4) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9maakaaabaGaciiBaiaac6gacaGGOaGa amiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaWG4bGaey OeI0IaaGinaiaacMcaaSqabaaaaa@43CD@ est :

    إختر إجابتك:
    السؤال : 2

    La valeur de lim n n n 2 +1 n+ n 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWa aSaaaeaacaWGUbGaeyOeI0YaaOaaaeaacaWGUbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGymaaWcbeaaaOqaaiaad6gacqGHRaWkdaGc aaqaaiaad6gadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaale qaaaaaaaa@4871@ est

    Texte de la question

    La valeur de lim n n n 2 +1 n+ n 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaaci GGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOWa aSaaaeaacaWGUbGaeyOeI0YaaOaaaeaacaWGUbWaaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGymaaWcbeaaaOqaaiaad6gacqGHRaWkdaGc aaqaaiaad6gadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaale qaaaaaaaa@4871@ est

    إختر إجابتك:
    السؤال : 3

    On considère la fonction g définie par : g(x)= tanxsinx x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaciiDaiaacggacaGGUbGa amiEaiabgkHiTiGacohacaGGPbGaaiOBaiaadIhaaeaacaWG4bWaaW baaSqabeaacaaIZaaaaaaaaaa@44C6@ pour x0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgc Mi5kaaicdaaaa@3975@ et g(0)=µ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacI cacaaIWaGaaiykaiabg2da9iaadwlaaaa@3B36@ La valeur de µ pour que g soit continue en 0 est :

    Texte de la question

    On considère la fonction g définie par : g(x)= tanxsinx x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaciiDaiaacggacaGGUbGa amiEaiabgkHiTiGacohacaGGPbGaaiOBaiaadIhaaeaacaWG4bWaaW baaSqabeaacaaIZaaaaaaaaaa@44C6@ pour x0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgc Mi5kaaicdaaaa@3975@ et g(0)=µ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaacI cacaaIWaGaaiykaiabg2da9iaadwlaaaa@3B36@ La valeur de µ pour que g soit continue en 0 est :

    إختر إجابتك:
    السؤال : 4

    Soit z=x+iy un nombre complexe z2+2z-3 est réel si et seulement si

    Texte de la question

    Soit z=x+iy un nombre complexe z2+2z-3 est réel si et seulement si

    إختر إجابتك:
    السؤال : 5

    Soit ( u n ) n0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadw hadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGH LjYScaaIWaaabeaaaaa@3D12@ une suite arithmétique. On sait que la somme u 3 + u 4 +...+ u 10 =672 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIZaaabeaakiabgUcaRiaadwhadaWgaaWcbaGaaGinaaqa baGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcaWG1bWaaSbaaS qaaiaaigdacaaIWaaabeaakiabg2da9iaaiAdacaaI3aGaaGOmaaaa @4476@ et que u 7 =81 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaI3aaabeaakiabg2da9iaaiIdacaaIXaaaaa@3A6B@ . Alors u 3 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIZaaabeaakiabg2da9aaa@38EA@

    Texte de la question

    Soit ( u n ) n0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadw hadaWgaaWcbaGaamOBaaqabaGccaGGPaWaaSbaaSqaaiaad6gacqGH LjYScaaIWaaabeaaaaa@3D12@ une suite arithmétique. On sait que la somme u 3 + u 4 +...+ u 10 =672 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIZaaabeaakiabgUcaRiaadwhadaWgaaWcbaGaaGinaaqa baGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcaWG1bWaaSbaaS qaaiaaigdacaaIWaaabeaakiabg2da9iaaiAdacaaI3aGaaGOmaaaa @4476@ et que u 7 =81 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaI3aaabeaakiabg2da9iaaiIdacaaIXaaaaa@3A6B@ . Alors u 3 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaaIZaaabeaakiabg2da9aaa@38EA@

    إختر إجابتك:
    السؤال : 6

    La somme S= 1 2 1 4 + 1 8 ...+ 1 512 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaaI XaaabaGaaGinaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaai abgkHiTiaac6cacaGGUaGaaiOlaiabgUcaRmaalaaabaGaaGymaaqa aiaaiwdacaaIXaGaaGOmaaaaaaa@4527@ est égale à

    Texte de la question

    La somme S= 1 2 1 4 + 1 8 ...+ 1 512 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaaI XaaabaGaaGinaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaai abgkHiTiaac6cacaGGUaGaaiOlaiabgUcaRmaalaaabaGaaGymaaqa aiaaiwdacaaIXaGaaGOmaaaaaaa@4527@ est égale à

    إختر إجابتك:
    السؤال : 7

    La valeur de l’intégrale 1 +1 1 x 2 4 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaaigdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaaGinaaaaaSqaaiabgkHiTiaaigdaaeaacqGHRaWkcaaIXaaani abgUIiYdGccaWGKbGaamiEaaaa@41BB@ est :

    Texte de la question

    La valeur de l’intégrale 1 +1 1 x 2 4 dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qmaeaada WcaaqaaiaaigdaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaaGinaaaaaSqaaiabgkHiTiaaigdaaeaacqGHRaWkcaaIXaaani abgUIiYdGccaWGKbGaamiEaaaa@41BB@ est :

    إختر إجابتك:
    السؤال : 8

    La primitive de la fonction f(x)= lnx x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaciiBaiaac6gacaWG4baa baGaamiEamaaCaaaleqabaGaaG4maaaaaaaaaa@3F16@ qui vaut 0 au point 1 est :

    Texte de la question

    La primitive de la fonction f(x)= lnx x 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG4bGaaiykaiabg2da9maalaaabaGaciiBaiaac6gacaWG4baa baGaamiEamaaCaaaleqabaGaaG4maaaaaaaaaa@3F16@ qui vaut 0 au point 1 est :

    إختر إجابتك:
    السؤال : 9

    La courbe représentative de la fonction f(x)=cos( e x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaGG4bGaaiykaiabg2da9iaacogacaGGVbGaai4CaiaacIcacaGG LbWaaWbaaSqabeaacaWG4baaaOGaaiykaaaa@4084@ admet une tangente au point d’abscisse 0 dont l’équation est :

    Texte de la question

    La courbe représentative de la fonction f(x)=cos( e x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaGG4bGaaiykaiabg2da9iaacogacaGGVbGaai4CaiaacIcacaGG LbWaaWbaaSqabeaacaWG4baaaOGaaiykaaaa@4084@ admet une tangente au point d’abscisse 0 dont l’équation est :

    إختر إجابتك:
    السؤال : 10

    Un argument du nombre complexe z= 3 +i 2 i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabg2 da9maalaaabaWaaOaaaeaacaaIZaaaleqaaOGaey4kaSIaamyAaaqa amaakaaabaGaaGOmaaWcbeaakiabgkHiTiaadMgadaGcaaqaaiaaik daaSqabaaaaaaa@3E51@ est :

    Texte de la question

    Un argument du nombre complexe z= 3 +i 2 i 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiabg2 da9maalaaabaWaaOaaaeaacaaIZaaaleqaaOGaey4kaSIaamyAaaqa amaakaaabaGaaGOmaaWcbeaakiabgkHiTiaadMgadaGcaaqaaiaaik daaSqabaaaaaaa@3E51@ est :

    إختر إجابتك: